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AERONAUTICS

THEORELKKML PRESSURE DISTRIBUTIONS FOR SEXERKG RELATED

NONHFI’ING AIRFOILS AT HIGH SUBSONIC SPEEDS

By John R. Spreiter, Alberta Y. Alksne,
and B. Jeanne Hyett

SUMMARY

Theoretical pressure distributions on five related airfoils,
including thin symmetrical circular-arc airfoils, in two-dimensional.flows
with high subsonic free-stresm velocity are presented. The airfoils have
various locations for the point of maximw thickness rauging from 30- to
~0-percent chord smd are of arbitrary, although small, thickness ratio.
The results are obtained by approximate solution, through an iteration
process, of a nonlinear integral equation derived from the equations of

a transonic flow theory. It is shown that the pressure distributions dis-
play most of the principal phenomena observed in experimental studies,
and are in good correspondence with those calculated by other methods for

* subcritical.l%ch numbers snd for Mach numbers near 1.

INTRODUCTION

The equations governing transonic flows are knows snd well established
by favorable comparisons with experiment. Although the difficulties aris-
ing as a result of the nonlinearity smd mixed character of the differential
equation for the potential have hindered the advancement of the analysis,
approximate methods are gradually emerging that permit the theoretical
prediction of pressure distributions on a wide variety of shapes of
aerodynamic interest.

One of these methods is that described in reference 1 in which the
differential equation of transonic flow theory is recast into the fom
of a nonlinesr integral equation and approximate solutions are sought by
application of an iteration procedure. The iteration procedure is of the
successive approximation type, but differs from the related procedures
customarily employd to determine higher approximations to the solutions
of problems of compressible flow theory in that the quadratic nature of
the integral equation is reco~zed and retained throughout the snalysis.
This method is described in general in reference 1 and is applied to a

& nonlifting symmetrical circular-arc airfoil for which pressure distribu-
tions are calculated for a rsmge of Mach nudbers efiending from well below
the critical Mach number up to unity. The results indicate most of the

“
principal phenomena observed in experimental studies. Certain aspects of
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the results for free-stream Mach numbers near unity are not as satisfactory
as for lower, but still supercritical, Mach numbers, however, and It i.s ,*.
now evident that one of the simplifying approximations needs refinement
before results of good quality can be calculated for flows in which the
free-streem Mach number approaches unity.

—

Although it would be interesting and worthwhile to develop the
necessary refinement to extend the Mach number range over which the method
of reference 1 can be applied satisfactorily, the need for such a refine-
ment has been greatly reduced by the develo~ent of a second approximate
method described in reference 2. The latter method enables the determina-
tion of expressions in closed aaalytic form for the pressure distributions
on a wide variety of airfoils in flows with free-stresm Mach numbers equal
to or near unity. A large number of specific results are given in refer-
ence 2, but particular attention is focused on a fsmily of airfoils,
including symmetrical circular-src airfoils, that have the point of max-
imum thickness located at 30-, 40-, 50-, 60-; “and70-percent chord, and
for which experimental pressure distributions are available from refer-
ences 3 - 4. These results indicate pronounced effects of airfoil
shape, but provide no”information on the trawition from the pressure
distributions of subsonic type that occur at all Mach numbers below the —

critical to the pressure distributions of sonic type that occur at free-
*

stream Mach numbers near unity. Theoretical.pressure distributions can
be calculated for most of the intervening Mach number renge by applica-
tion of the method of reference 1, however,

P
and it is the principal pm-.

pose of this paper to present and discuss the results of such calculations
for the particular family of airfoils referred to almve. A resum~ of the
method of reference 1 precedes the presentation of the results.

PRINCIPAL SYMI!OLS

b

%

%

c

cd

75d

function defined in.equation (20)
#

P-Pm
pressure coefficient, —

* um2

chord

section pressure drag coefficient,~
‘m um2c
-r

(u&) ‘/3 cd

T513

—.
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d

E

f

H

R

h

I

k

L

2

M

%

%

P

Pm

r2

t

Um

U,w

ii

T

X,z

pressure drag

function &efined in equation (22)

function defined in eqwtions (24) and (25)

h
G

I@&&) “3

half height of wind tunnel

function defined in equation (16)

%2(7+1)
Um

2iiL-1

width of element used in
distribution

local Mach number

critical Mach number

free-stream Mach number

static pressure

approximating the chordwise velocity

free-stream static pressure

maximum thickness of profile

free-stream velocity

perturbation velocity components parallel to the X,Z axes,
respectively

k

F“
k—w
Pg

Cartesian coordinates ~
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z x

F pz

z ordinates of wing profiles

kUm z
-T

k 1- 2

ratio of specific heats, 1.4 for air

$--%

variables of integration corresponding to %,?Z

1-IF

(uJxT)2°

l-&2-—
(UJW)-

Pm free-stresm density of air

t
T-

(2

kUm
?

7T

‘T perturbation velocity potential

Subscripts

a values ahead of shock wave

b values behind shock wave
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cr conditions associated with the critical Mach number

L values given by linear compressible-flow theory

w values at the wing surface

WT wind tunnel

* values associated with

Superscript

the sonic point

DESCKCPI!IONOF AIRFOILS

The airfoils considered in this paper are exactly those for which
experimental data are given by Michel, Marchaud, smd Le Gallo in refer-
ences 3 and 4. The ordinates Z of the airfoils that have the Toint of
maximum thickness at 60- and TO-percent chord are given by

(1)

where
to the

n has the values 3.38 and 6.05, respectively, and A is related
thiclmess ratio T by

nn/(n-z)
A =—

2(n-1) T
(2)

The o~tes of the airfoils that have the point of maximum thiclmess
at 30- and 40-percent chord are given by

:= ’[(+(+s2
(3)

where n has the values 6.05 smd 3.38, respectively, and A is related
to the thiclmess ratio by eqmtion (2). The ordinates of the airfoils
that have the point of maximum thickness at ~-percent chord are special
cases of either of the families of airfoils defined by equation (1) or
(3) When n is equated to 2, and are the same as those of the airfoils
for which theoretical results are given in reference 1. The latter
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airfoils
airfoils
order of

The
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may be referred to as either parabolic-arc or circular-szc
since the two classes of shapes are indistinguishableto the
accuracy of the small-disturbancetheory of transonic flow.

RE3ti OF THEORY

new results presented in this paper are determined by direct
application of the me;hod of reference i ~o the specific airfoils
d&;cribed in the preceding section. A resum~ of ;he parts of reference 1
that pertain specifically to the determination of pressure distributions
on symmetrical nonl.iftingairfoils is given here in the interest of com-
pleteness, and in order to provide an opportunity for additional comments
on certain points beyond those provided originally in reference 1.

Fundsmntal Equations and I!oundaryConditions

Consider the steady flow of an inviscid compressible gas past an
arbitrary symmetrical nonlifting airfoil of chord c snd thickness

ratio T. Introduce C?artesisncOO*ates x
with the x axis parallel to the direc-

2L;L<:4%* ?2;3::s;%%%%0::

tion of the free stream as illustrated in

o tial be (p,~d the perturbation velocity tom:

Sketch (a)
ponents parallel to the x snd z axes be cpx,
or u, and qz, or v, where the subscript
indicates differentiation. The bxmdary condi-

tions require that the perturbation velocities vanish at infinity, @
that the flow is tangential to the wing surface. The former condition
indicates that
be approximated

q is a constant at
for thin wings by

infinity. The latter condition can

(4)

where Z represents the ordinates of the airfoil upper surface. The
differential-equationfor q in the small-disturbancetheory of transonic
flow is

(5)

.

.

.

?-

4

r
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where ~ is the Mach number of the undisturbed flow and. 7 is the
ratio of specific heats (1.4 for air).

l?qzation(5) is, of course, valid OnlY h regions where the necessaq
derivatives exist and are continuous. Since these conditions do not hold
where shock waves occur, sad since shock waves are a prominent feature of
most trsnsonic flows, an additional equation is needed for the transition -
through the shock. The fundamental prcqerties of a shock surface require
that the normal component of velocity be discontinuous and the tangential
component, and therefore q, be continuous. The necessary relation
follows from the classical expression for the shock polar which, in the
small-disturbance transonic theory, is appro-tedby

(6)

where the subscripts a sad b refer to conditions .~ead of and behind
the shock.

.

.

Upon solving the above lxmkhry-value problem for the perturbation
potential, one may determine the pressure coefficient by mesms of the
approximate relation

%?
P-Pm 2%=— =-.—

Um ax
+ um2

(7)

An important quantity in the discussion of compressible flows is
the critical pressure coefficient ~ associated with the local occur-

rence of sonic velocity. The appropr$~te relation is found by combination
of equation (7) and the expression obtained by eqpating to zero the total
coefficient of ~ in eqmtion (~), and is

2(1-&2)
%cr=-—

&2(Y+Q
(8)

.-

The analysis presented in reference 1 is based upon consideration
of the preceding eqyations recast into a normaMzed form by introduction
of reduced variables. The definitions of these qusatities, together with
additional useful relations, are given below.

s

.
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x.x

kUm ~
.z=—

P=

(u&) ““
%?= +/. %

%? = -2*= ---Q %., =2%

where

or to

*“

e-

(9)

by equation (~) reduces to

(10)

(1.1)

It is apparent from equation (1.1)that fi< 1 when the local velocity is
subsonic, ii= 1 when it is sonic, end Ii> 1 when it is supersonic. SiJ.U-
ilarly, the expression for the shock relation given by equation (6) reduces
to n

.
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r

.

(12)

If the shock wave is a normal wave and the flow is parallel to the
Z ~is (i.e., =a = ‘~ = 0, but fia~ fib),it can be seen from eqUa-
tion (12) that the reduced perturbation velocity component Ii jumps from
1 + A immediately ahead of the shock to 1 - A hmdiately behind the
shock. The qutityii-(ti2/2), on the other hand, is eqpal on the two sides
of the shock. The latter result is consistent with the fact that the
quantity li-(&/2) corresponds, in the transonic approximation, to the
mass flow, which is continuous through a

An Integral Eqyation for

nomal shock.

Transonic Flow

Approximate soluticms for the pressure distribution on symmetrical
nonlifttig airfoils in mixed or transonic flows are sought in the method
of reference 1 by consideration of the following integral equation derived
from the differential eqgations given in the preceding section by
application of Green’s theorem:

where

The term UL that appears in eqpation (13) represents the values for fi
given by linearized compressible flow theory. Its values can be obtained
by application of the followimg well-lmown expression:

(14)

The derivation of equation (13), presented b reference 1, requires
the introduction of two slightly contradictory statements regarding the
nature of the shock waves. They are: (a) All shock waves are assmed
to Me in a plane perpendicular to the x sxis, and (b) the shock waves
are assmed to be nomal shock waves (i.e., normal to the local flow
direction.). Anew derivation of eqyation (13) has been given subsequently
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in reference ~, however, in which it is
to introduce these two assumptions, ad

NACA TN 4148

m

shown that it is not necessary
that this integral equation is,

indeed, sn exact relation within the frsmework of tran;onic &all.- -
disturbance theory.

It is helpful to consider, before proceeding to the details of the
approximate solution of equation (13), a summary of the discussion given
in reference 1 concerning some properties of.the nonlinear integral equa-
tion snd of its solution. The first and simplest property is that the
solutions of equation (13) must approach those of linear theory when the
free-stream Mach number is much less than the critical Mach number,
since D << 1 and the terms involving the square of Ti become neg~gible
with respect to those linear in fi,thereby leaving only

(15)

Further discussion of the pzmperties of equation (13) is facilitated
by introduction of the abbreviation 1/2 for the integral, so that

(M)

.

where

Although I is a function of = snd is therefore unknown, it is
informative to rewrite equation (13) by solving for ii in terms of I
and ~L, thus

ii. 1*-=12G (17)

where

Several points are to be o%se?nwd at once with regard to equation (17).
First of alL, the discriminant must always be positive in order to
obtain real values for ii,thus

I~L (19)
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Furthermore, the choice of plus or minus si~ determines whether the
local velocities are subsonic or supersonic. A change in sign at the.
point where the radical is zero corresponds to a smooth transition through
sonic velocity. A change in si~ at a point where the radical is not zero
results in a discontinuous @Op in velocity snd corresponds physicald.yto
a shock wave. Such disconti.nuitiesare permissible when they proceed from
supersonic to subsonic velocities (or from plus to minus sign in eq. (17))
when progressing in the flow direction. Discontinuities in the reverse
direction are inadmissible since they correspond to expansion shocks, a
phenomenon which violates the second law of thermodynamics.

In order to remove unnecessary complications W to facilitate the
discussion, the following remarks are co~~ed to the re~tions ~ng 1)
L, i?,=dfiL evaluated at the airfoil surface. h this way, eaeh of the
four functions reduces to a function of a single variable 5? smd can be
illustrated simply by curves rather than by surfaces. The subscript W
is amended to each of the four variables to denote that the values are
those at the wing surface. The Lw and Iw curves represent the compo-
nents involved in the solution Of equation (17)> and ‘~ ~d ~~ curves
represent,respectivel.y,the velocity distributions given by transoni-c
theory and by Idnear theory.

a

.

‘e linear theOmsO1utiOn%4 for subsonic flow around a nonMft-

ing airfoil of given shape can be readily derived through application of
eqpation (14). The corresponding values for the Lw curve follow directly
from equation (I-8). Not very much can be stated at this point about the
values for Iw, except that they depend On the distribution as we~ aS
ma@tude of G and that the inequality mentioned above must be satisfied.
The relation betwea the Iw and ~ curves is of utmost importance,
however, =d will be discussed qtiitatively fi the fo~ow~g ==aphs-

It follows from the discussion presented in the preceding paragraphs
that the qualitative features of the relatiops szuongthe Iw, Lw, ‘~,
and ii~= curves are of essentially one form for flows in which the Qee-

stresm &ch number is less than the critical, md of another form for flows
in which it is greater thsn the critical. If the Mach number is less th~
the critical, the IW and LW curves never touch. Sketches of typical.
curves for this condition are shown in
sketch (b). The amplitudes of all .
four curves increase as the free-
stream Mach nmnber increases> howeverj
and the Iw and ~ curves finally
touch at one point as the free-stresm
Mach number becomes equal to the
critical Mach number. If the free- R’-:P
stresm Mach number is greater than ~<M~

the critical, the IW and Lw curves
must continue to touch at at least Sketch (b)

one point along the chord in order to avoid the occurrence of forbidden
expansion shock waves. The two curves may also be tsngent at a second
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point along the chord, in w’hi.chcase
the flow may decelerate smoothly from

~’”~~~Fore.ca~,th~~d~c~e

supersonic to subsonic velocities. All
present indications are that such flows
are very exceptional.if they exist at
all, and that in most cases, the flow
decelerates abruptly from supersonic to
subsonic velocities through a shock wave.

M&Mti
are tsmgent at only one point along the

Sketch (c)
chord sad the four curves appear qus.li-
tatively as illustrated in sketch (c).

The point of tsngency locates the position of the sonic point and the
point at which the sign in eqpation (17) changes frcm minus to plus. At
some point downstream of the sonic point, the flow decelerates abruptly
to subsonic velocities sad the sign in equation (17) changes back to minus.
If the IW and LW curves are continuous at this point, the jump in ‘%
is from l+Atol - AL corresponding to that of a normal shock wave,
ad (d~/@a = -(d.q/dx)b.

Simplification of the Integral.Equation 9

Since no general methods are available for the solution of integral
equations, such as eqpation (13), that are Imth nonltiear snd singular,
recourse must be had to approximate methods. .7Appro-te solutions of
this equation could conceivably be worked out numerically by st_=td.ng
with a two-dimensional grid of suitably selected values for ii(~,~ and
iterating until convergence is obtained. Such calculations would pro-
ceed by inserting the assumed values for fi into the double integral.
and solving to obtain the ?iextapproximation for fi(~y~l ~ use of
tangency condition on the surfaces or functions represented by I end L
as ●discussed in the preceding paragraphs. If the first approximation
for = is tsken to be tiL, it is shown in the appendix of reference 1
that the final result for ii,in the limit of ~ tiftiite n~ber of iter-
ation steps, coincides with that provided by c1-assfc~ iteration methods>
provided the free-stream Mach number is less thsm the critical. It is
shown, furthermore, that the power series expnsions for the higher
approxtiations to the solutions of the equticnm of transonic flow theory
obtained by application of classical iteration methods diverge if the
free-stresmllachnumber is greater ths.nthe critical.

—

.

-

The method of reference 1 does not seek approximate solutions for
supercritical flows by taking iiL to be the first approxhm.tion, but
follows an idea of Oswatitsch expressed in references 6 md 7 that approx-
imate solutions for mixed flows containing shock waves can be obtained if
the starting G distribution corhains discontinuities compatible with
the shock relations. This idea is combined in reference 1 with an itera-
tion procedure that incorporates the considerations described above regard-
ing the relation between the I and L functions. It is sh- further in

u “-

r



NACA TN 4148 13

reference 1 that this Trocedure converges rapidly snd that it is not
necessary to be highly accurate in the selection of initial values for u,
provided care is exercised in fulfilling the tsngency requirmnent on the
I and L functions.

A source of complication in the numerical solution of equation (13)
byan iteration process is the double integral. It is assumed in the
method of reference 1 that approximate knowledge of the velocity distri-
bution in syace is sufficient for determining a working a~proxhatian for
the double integral. The possibility of introducing simplifying approxi-
mations in an integral, with the effect that the error in the result may
be rather small, appears to be the principal advsmtage of approaching the
nonlinear problems of compressible flow theory, md perhaps other problems
as well, through consideration of an integral equation rather thsn through
direct consideration of a differential eqyation.

The particular ass~tion introduced at this point in the method of
reference 1 is that a sufficiently good a~roximation to the velocities
in the flow field surrounding the airfoil can be expressed in t~rms of
the local coordinate Z, the ordinates of the airfoil surface Z(X),
and the desired, but unknowm velocity distribution ‘w(X) on the airfoil

● surface. This permtts one integration to be perfomed, thereby reducing
the double integral of equation (13) to a single integral. The ~articular
expression used h reference 1 smd in the calculations of additional

. results reported in this paper is one suggested originally by Oswatitsch
in references 6 smd 7. It possesses the properties that ii starts fraq
the value ‘w at the airfoil surface (IZ= O) with an tiftfal rate of
change given by the irrotationality condition @ vanishes at great
distances as l/Z2, snd is explicitly the following:

Ii(x,z) =
V@?,o)

[l+(E/b) ]2
(20)

where

b=-
2%

h2z/ax=

Substitution of eqyation (20) in the double integral of equation (13)
permits integration with respect to ~. Thus, by performing this integra-
tion and setting Y = O, the following approximate integrsl equation is
obtained for ‘ii:

(21)
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.

The function E is

()
E ~ =E(X)=*

[
wlb-~ox2+fi) -

7f(l+x*)5 2

(1-lox2+&) 2?2lx I
1

-*(l+x2) (25-7M2-xS-F) (22)

Althou@ the int~gration interval is indicated in equation (13) to extend
from E =-m tog = +CXJ,the contribution of the regions ahead of the le~-
ing edge and behind the trailing edge vsnishes with the introduction of .
the velocity profile given by equation (20) since b is infinite. The
integration need, therefore, be carried out ohly over the chord c.

Attention is called to the fact that the approxhnate relation for
fi(=,~ given by equaticm (20) is not entirely satisfactory. Evidence of
this is provided by the facts that fi is indicated to be zero in the
region ahead of the leading edge smd behind the trailing edge where b
is infinite and that the discontinuities in fi at the shock waves are
consistent with the shock relations only at the surface of the airfoil.
A further shortcoming of equation (20) is that it cannot be used in a
region where b is negative since it leads to a spurious infinity when
inserted into the integral of equation (13). ‘-Forthe convex airfoils
considered in this paper, negative values for b are indicated by the
above expression for small regions near the leading sad trailing edges
where iiw is negative. Since estimates indicate that the contributions
of these regions to the value of the double titegral are very small over
most of the chord compared with those of the regions in the middle of the
airfoil, the contributions of regions where g. is negative have been
consistently disregarded in the present calculations.=

Negative values for b also result in regions of positive Ilw if
the adjacent surface of the airfoil is concave rather than convex. This
situation does not arise in the cases considered in this paper because
all of the airfoils have convex surfaces, but is likely to occur in other
cases, a typical exsmple being that of superc.riticalflow past an airfoil
with a cusped trailing edge. In this partic~ case, the positive values
of ‘Ii and the chordwise extent of the regicm of negative b may be
large, and the simple expedient of disregarding the influence of such
regions could herdly be expected to succeed. ‘It would appear necessary,
before pressure distributions are calculated for such cases, to reconsider
the question of a suitable velocity profile and to intrduce some other

%his point was Improperly observed in the calculation of the results
for the symmetrical.circular-arc airfoils given originally in reference 1.
The results for this airfoil that are presented herein have been corrected
to conform with the abme statement, even though the difference between
the two sets of results is generally quite small.

—

—

.

—_

—

—
--

$

.
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.

expression more appropriate than that given by eqwtion (20). The same

. conclusion a~lies also to airfoils with extensive flat regions for which
b is infinite.

The error 51 incurred in the value of I by the introduction of
the relation between Tiand Y given by equation (20) is, of course,
equal tothe differencebetween the exact and approximate values for 1,
that is,

+ca -!-al

-m

where

These expressions possess
estimate upper bounds for
the region of integration
or infinite, at ~ = 5?,~
property does not Iesd to

-m

f

-m

-2
w

* 27f[l+ (~/b) ]4

[

o

for b>O

for b<O

two properties
the magnitudes

that tie it difficult to
of 1= ~d Iapp. They are that

etiends to infinity and that u is singular,
= r. In actual applications, however, the first
large contributions frm the distant regions

because %x diminishes sufficiently rapidly with distance from the air-
foil, and ~pp is chosen so as to assure the ssme behavior. The second
property remains a factor, however, because neither ~ nor ~~ v~ishes
at the singular point of a. Although it is one of the principal proper-
ties of the integral equation given by equation (13) that serious diffi-
culties arising from this source are averted ~ the fact that the values
of c1 change from positive to negative in a cyclic manner as the point
~,~ moves around the singular point Y,Z, it is nevertheless true that
most of the contribution to the value of I arises from the region in the
Vichlity of X,z. It appears plausible, however, since ~pp has the
ssne values and first derivatives as ~ for all points along the air-
foil chord, except those in the immediate vicinity of the leading and
trailing edges, that the error incurred h the value of I should be small
for some large class of smooth convex airfoils.

It is shown in reference 1 and verified further by examination of
the new results presented herein that considerations based on the use of

b equation (21) together with the relation between the I and L curves
discussed in the preceding section lead to useful results for all Mach

. numbers up to that at which the shock wave Is situated at the trailing
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edge of the airfoil. At higher Mac& nmbers, the approximation furnished
by equation (21) is insdeqpate, particularly for the region near the trail- -
ing edge, because of the presence of a pair of oblique shock waves etiend-
ing downstream from the
1= in the presence of
arithmic singularity at
sinxity h iiL,and
shock wave. This point
prepared and an attempt

trailing edge. Examination of the properties of
such a shock system shows that there is a log-
the traiking edge that exactly counteracts the
a discontinuity in its value elsewhere along the
was not understood a~-the tiinereference 1 was -
was made there to obtain results for higher Mach

numbers by assuming that an adequate approximation for the contribution
of the double integral to the values of ti on the airfoil could be
attained by replacing the actual oblique shock system with a normal shock
wave situated at the trailing edge. This procedure yielded results for
the pressure distribution on the airfoil that a~pesmd reasonable in spite
of the occurrence of a l.og~ithmic singularity in = at the trai13ng edge.
This singularity arose from the fact that the approximation introduced by
use of IaPP resulted in the loss of the singularity in I, smd therefore
provided no mechanism for the proper cancellation of the singularity
h iiL. An additional difficulty that arose in reference 1 in this Mach
number range is associated with the fact that no direct plsn for iteration
could be devised and that approximate solutions had to be sought by using
a procedure that might be described as partly iteration and partly trial .

and error. Although it would be desirable to develop the present approach
so that results could be obtained for the entire Mach number rsnge, this
has.not yet been done because results for Mach numbers near unity can now

.

be obtained by application of the ‘newersnd simpler approxhnate methods.
of reference 20
erence 2, cover
thsn mity with
slightly larger
edge.

..

One of the

The present results, together tith those given in ref-
the entire Mach number rsnge from zero to somewhat greater
only a small.gap remaining for Mach numbers equal to or

.

thsn that at which the shock wave reaches the trailing .—
—

Numerical Evaluation of htegral

principal steps in the iteration method described in
reference 1 is tfieevacuation-of the integral involved in equation (21).

Since iiwsnd b are generally prescribed by a
set of numerical values rather than by snalytic
functions, a numerical technique has been used
for the integration. The process consists of
replacing the prescribed iiw distribution by a

~w stepwise approximation as indicated in sketch (d),
introducing a mean value for b for each of the
rectangular elements, integrating to determine the

T contribution of a single element, smd sting the
\ influence of all el~ents for which b is posi.- #
tive. The contribution of a si~le element of

Sketch (d) width 2 and centered at % = ~~, as typifiedby
the shaded area of sketch (d), is given by

.
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Upon performance of the
is obtained for f:

Zf. 1
k 12(1+A2)4

where

(24)

indicated operations, the following expression

{%7$T[ 1
(1+A2)4-(1+A2)2+8 (1+A2)-8 +

[ 1}
12A(A2-l)ZnlAl-A(l+A2) (l+A2)2+l.2 +

1 .{%+[ 1
(1+B2)4-(1+112)2+8(1.+B2)-8 +

12(I+B2)

[
lZ23(B2-l)ZnlBl-B(l+B2) (l+B2)2+12

1}

A=

Thus, the integral in

zi+2(x-~i) zi-2(x-~i)

2bi ‘
B=

2bi

eqya.tion(21) is approxhated as follows:

A graph illustrating the variation
(~-~j)/2i is given in reference 1

of f with 2@i for various
snd is not repeated here.

(25)

(26)

& Most of the results given in reference 1 were calculated using
only 10 elements to approximate the iiw curve. That this number is
sufficient for the synunetricalcircular-arc airfoil was checked by

“
re~eating the calculations in selected cases using .20elements snd noting
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that the results were nearly indistinguishable on the scale to which they
are presented in reference 1. The same genera3 procedures were fol.luwed
at the outset of the calculations of the pressure distributions for the
additional airfoils included in the present investigation. It WaS grad-
ually concluded, however, that the extra work incurred by the use of 20
rather thau 10 elements is largely compensated by the more rapid conver-
gence of the iteration process, ad that in many cases less total work is
required to perform the calculations with the larger number of elements.
As a result, all of the pressure distributions presented for the airfoils
having msxtimn thickness at 30- and TO-percent chord were calculated using -
20 elements. On the other hsnd, the ~ressure distributions for the air-

—

foils having maximum thickness at ~- and 60-percent chord were calculated
using 10 elements for all Mach numbers except the critical, for which
20 elements were used.

Determination of llLW

The values for ii
v

can be detemnined from the general solution
fOr fiL given in eqpat on (14) by perfomllingthe indicated operations
snd setting E = 0, or more simply from the following expression derived
from equation (14):

(27)

The Cauchy principal value is used in the integration. In this way, the
following expression is obtained for ~T~.7for the airfoils described by

()+lX+—. .+
n-2 c””

(28)

where m is such an integer that O < (n-m) < 1. If n is any integer, #
n-m is zero snd the integral disappears. %US equation (28) reduces to
the following simple fom for the symmetrical circular-arc airfoil for
which n = 2:

.
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.

.%=q(.-+a+,]

If n is not an integer, the
integral remains. It csn be eval-
uated anslflically if n is any
integer Tlus certain simple frac-
tions. In the present investiga-
tion, however, it is necessary to
consider the values 3.38 and 6.05
for n and the integrals are
evaluated numerically. NO diffi-
culty occurs at the point where
~ = 5? since the integrsnd is not
singular but is equsd.to

(n-m)/(X/c)‘-(n-m). The general
expression for =~ for the air-

(29)

-“w-l-

1
— .5‘m’

-Ir I
—

-—.4md.6 1.
–-– .3ad.7

1“ 1
0 .2 .4 .6 .8

a
LO

foils described by’’equations(2)
and (3) can also be written in a Sketch (e)
similar msnner, but it is suffi-
cient to note that the results are the sac, except for replacement of
X/c by l-(Y/c), as those found by application of equation (28). The
chordwise variation of li

%

for each of the five airfoils of the present
investigation is shown graphically in sketch (e).

Iteration Solution of Integral Eqpation

Approximate results for pressure distributions on thin airfoils G
determined, in the method of reference 1, by solving the simplified inte-
gral equation by use of an iteration procedure in which certain operations
at each step are performed numerically snd other operations are performed
graphically. In particular, the value of the inte~or the function
designated in the above discussion by T, is determined numerically; the
tsmgency condition between the I ad L functions is satisfied, when
necessary, by use of graphical.technique; and the resultant values for ‘~
are determined at each step by use of the quadratic formula as indicated
by equation (17). These techniques have been applied without modification
in the calculation of the new results presented in this paper. It should
be remarked, however, that there are two categories of problems discussed
in reference 1 for which no new results are given in this paper. One of
these is that of shock-free supercritical flows for which no further
attempts were made to attain solutions because it seemed evident that the

L ssme negative result reported in reference 1 would again be found. The
other category is the one mentioned previously that includes the Mach
nmber range near unity at which the shock wave is situated at the trail-

. - edge ad the approxmtim of the vsriation of iiwith~ furnished
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by eqpation (20) is clearly inadequate. In spite of this known deficiency
and the lack of a direct plsm of iteration, nunerous calculations were
actually made for this category. Althou@ the quality of the results was
generally comparable with that of the corresponding results reported in
reference 1 for the symmetrical circular-arc airfoil, it was not equal to

—

the quality of the results for lower Mach nuni%ers. This situation,
together with the decreased necessity for the results occasioned by the
develo~nt of the theory of reference ,2,has caused these results to be
omitted from the present report.

The two categories for which new results are given in this paper are
(a) subcritical flows sad (b) supercritical flows for which the shock wave
is situated forward of the trailing edge. The details of the iteration
method are such that the Mach number or value of !& for a given calcu-
lation can be selected in advance for subcritical flows, but not for
supercritical flows. In the latter case, the position of the shock wave
is fixed instead, snd the associated Mach number is found as part of the
solution. For this reason, results given for supercritical flows are
selected so that the shock wave is situated at even intervals of the
chord, rather than so that there are even intervals of Mach number or ~m.

RESUIIIXAND DISCUSSION

Presentation of Results

The theory described im the preceding pages has been applied to

.

.

calculate pressure distributions for both subcritical snd supercritical
Mach numbers on each of the five femilies of airfoils described at the
beginning of this paper. As noted previously herein, the Mach number
range investigated extads in each case from well below the critical up
to the lowest Mach number at which the shock wave is at the trailing edge.
The results are given in numerical form in table I snd are illustrated
graphically in figuresl through 5. Each figre consists of two parts.
Part (a) presents the results for subcritical flows and part (b) presents
the results for supercritical flows. .. ,- -.

As indicated previously herein, the pressure distribution associated
with the value of Em for which the shock wave is situated at the trail-
ing edge is inaccurate in the vicinity”of the trailing edge. The results
presented for this case are consequently indicated by a dashed line over
the last few percent chord.

In addition to the above results, each part of each figure contains
an extra set of results indicated by a dotted line that is useful for
reference and cmrparison. The dotted line in part (a) of each figure
indicates the pressure distribution provided by linear theory for the
lowest Mach number (or most negative ~m) considered for each airfoil.
That in part (b) of each figure indicates the theoretical pressure
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distribution given in reference 2 for free-stresm Mach n~ber 1 (Em = O).
The latter results are shown in reference 2 to be in substantial agreement
with the experimental results of references 3 and 4.

Examination of the results for the various airfoils reveals that the
pressure distributions for supercritical flows bear sm interesting rela-
tion to the pressure distributions for the critical Mach nuniberand for
free-stresm Mach nmnber 1. As the Mach nunber is increased beyond the
critical, the shock wave increases
in strength and moves rearward
across the chord, but the vslues
of ~ over the forward pcu%ions
of the airfoil remain nearly the m’:
same as at the critical Mach number. A
When the l&ch number is increased
sufficiently that the shock wave
reaches the trailing edge, the
entire pressure distribution resem-
bles in form, but not in level, the
pressure distribution at Mach nmn- .6-.-...-.

ber 1. It can be seen, however,
* that the chordwise extent of the

.5--------.

-c.
2

supersonic region and the rate at +-
.4----—+

which it grows as the Mach number .3“---—- .
. is increased beyond the critical

are strongly dependent on the shape
of the airfoil. These statements
are illustrated by the curves pro-
vided in sketch (f) that show the
variation with & of the locations of the sonic point sad the shock wave
for each of the airfoils. The dotted Unes for values of Em near zero
refer again to the results given in reference 2 for the location of the
sonic petit at Mach nwnber 1 and vicinity.

1 [ 1 1 1 I

-20 -1.6 –12 –.s -4 0
(Cc.

Sketch (f)

The results for the airfoil having maximm thickness at 30-percent
chord are particularly interesting because they indicate that the position
of the shock wave changes very rapidly with small chsnges in .& or Mach
nwnber. It is possible that this result may have a besring or.some of the
unsteady conditions that are observed in experimental investigations (see,
for instance, ref. 8). These conditions are gemerally associated with
extensive shock-wave bounda~-layer interaction. The circumstances
encountered on the airfoil.with the point of maxhnrm thiclmess at
30-percent chord suggest that unsteady phenomena ofma~or impcwhmce may
also occur even in inviscid flows if there is a LLttle unsteadiness in
the main stresm. The circumstsmces associated with this airfoil are in
marked coqtrast to those for the other airfoils considered herein for
which the position of the shock wave is more strongly dependent on ~m.

%
Examination of the simplified integral equation given in equation (21)

discloses that
. in Mach nmber

the great sensitivity of-
exhibited by the results

the shock psition to small changes
for the airfoil with maximm
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thickness at 30-percent chord is not to be associated, in
a forward location of the point of maximum thiclmess, but
ing of the curvature of the rear portion of the airfoil.

l$ACATN 4143

.

general, with
with a venish-
This conclusion

follows directly from the fact that the contribution to the value of the
integral of equation (21) arising from such_regions is very small because
b is large acco~g to eqyation (20),E[(~-X)/bl is large logarithmically
according to eqpation (22), and-the quotient E/b in the integrend van-
ishes in the ltiit as ‘thecurvature approaches zero. It thus follows that
the I curve, hence the ti

v
curve, snd finally the free-stream Mach

number are very insensitive o variations in the location of the shock
wave if the shock wave is situated adjacent to a pert of the airfoil where
the curvature is very small. Although this conclusion appears to be a
general property of the simplified integral eqpation given in equation (21),
some caution should be exercised in its tiediate” acceptance end widespread
application to physical problems %ecause the approximate relation, equa-
tion (20)jintroduced in the development of eqyation (21) from the exact
integral equation given in equation (13) obviotislydeteriorates in quality
as the curvature vsnishes. The agreement between the present results and
those for Mach nunibersnear 1 given in reference 2 suggests, however, that
the quality of the specific results given in this paper is not unduly ‘-””
impaired by this factor.

The results given in figures 1 through ~.are presented again in
figures 6 through 10 in m alternative form in which the variation of –
with Em is plotted for various stations along the chord. This form o>-
presentation is the counterpart, in terms of reduced quantities, of the
plots commonly given in repctis of experimental investigations sho~g
the variation of. C with & at prescribed points on the surface of a
wing or tidy. An dditional set of lines is included on each of these
figures sh~wing the theoretical results given in reference 2 for the vari-
ation of Cp with F& for free-stresm Mach nmnbers near 1. It csm be seen
that these-results are in essential agreement with those calculated by the
method of reference 1 for lower Mach numbers. This agreement is of par-
ticular interest because the two sets of results have been calculated by
methods that are new and approximate, but that differ widely in the
details of the approximation.

It is evident from examination of figures 1 through 10 that the
results calculated by the method of reference 1 display the anticipated
qualitative aspects of transonic flows associated with the part of the
Mach number range to which they apply (i.e., appearance, rearward move-
ment, and increase in strength of the shock wave as the Mach number is
increased beyond the critical, etc.) snd are in good qp.sntitativeagree-
ment with other theoretical results for low Mach numbers and for Mach
numbers near unity. The remaining sections of this paper are concerned
with comparisons of.the present results with those of higher a~er theory
for subcritical flows and with those of expe~iment for supercritical flows.

.

.

—
.

—

—.—

.—

-.—.
—

—

The results given in figures 1 through
and.~m. Since the extraction of the
with a given pair of values for &

F

10 are all expressed in terms
value of ~ that is asso-

—

@d the thickness ratio T
.
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requires the solution of a cubic algebraic equation smd is somewhat
inconvenient, figure 11 has been included to give the variation of ~

23

with Em for various 7.
that 7 is 7/5.

It is assumed in the preparation of this ~-aph

Existing Higher Approxhations for
Subcritical Flows

Although the results for supercritical flows represent the primary
contribution of the present investigation, it is not without interest to
examine the results for subcritical flows in somewhat greater detail and
to compare them with existing results given by linear theory and by higher
approximations. These comparisons are of psx’titulariqartance in the
present discussion because it is only for subcritical flows that a good
evaluation of the degree of accuracy of the results can be achieved at
the present time. Even this discussion is handicapped somewhat by the
fact that all other theories for subsonic flow azmund airfoils are also
approximate and that no exact solutions are lmown.

* From the present point of view, the most significant method that has
been used to obtain higher approximations to the solution for subcritical
flow around thin airfoils is the method of successive approximation in

. which the solution is expressed in a power series in thiclmess ratio.
In this method, the first term is the result given by linear theory, and
the coefficients of successive terms are determined by iteration. Although
a general.procedure for the evaluation of the second approximation has
recentQ been given by Van Dyke
(ref. 9), the determination of \

the third approximation has been -.6
0 Presentresulk

accomplished for only a few spe- \&‘“”0
---—kt W&f \O

cial shapes. One of these is -——~ II

the nonlifting symmetrical ——3rd M
-.4 I

circular-src airfoil for which < > /
the second approximation has Ciro.dararcr..lO

~ <
0

Cp
been given by Hantzsche and
Wendt (ref. 10) snd the third -.2

~Exact lsentr~k

approximation by AssJsa(refs.Id.,
12, snd 13).2 Sketch (g) shows
a comp=ison of the variations
of Cp with ~ at the midpoint o .2 .4 .6 .8 1.0
of such an airfoil having a Ma

thickness ratio T of 0.10, as
indicated by the present calcu- Sketch (g)

lations and by the first, second, and third approximations. It can be
seen that the present results approach those given by the first

*
%e results for the third approximation given in the present report

differ from those obtainable directly from the expressions given in either
. references 11 or 12 and 13 because of the correction of some misprints.

These corrections have been verified by correspondence with the author.
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approximation (or linear theory) for small Mach nmnbers, but depart
therefrom with increasing Mach number sad are much closer to the higher
approximations for Mach nurbers near the critical. At Mach nmbers
greater than the critical, the results of the present calculations differ
markedly from those indicated by the method of successive approximation.
This is proper, however, since the range of applicability of the latter
method isconfined to subcritical Mach nunibers.

It should be iiotedthat the curves labeled first, second, and third
order present the results indicated by successive approximations to the
solution of the exact equations for imviscid compressible flow. It iS of
greater significance, from the point of view of evaluating the accuracy
of the present calculations, to compare the present results with those
indicated by successive appro-tions to the solution of the simplified
equations of transonic small-disturbancetheory. The latter results csn
be calculated by use of the following expression, which is resdily derived
from Asakais result by taking the lhiting form consistent with the
approximations of transonic flow theory:

where for the midpoint of a circular-arc airfoil

8al=-. 2.5465
7C

1a2 .X?--- 0.5132
fi2 2

-.

(30)

1

}

(3Z)

a

.

.

(%=$ -=+6 )(281 ~m2+&
)

~+ 4.908 = 0.6339
*

J
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Notice that ~. = O sad

from the–graphical display of
the results given in sketch (h)
that the variation of ~
with ~ indicated by the
present calculations is
slightly greater than that
indicated by the third approx.
imation. The precise evalua-
tion of the accuracy of the
present results remains uncer-
tain because neither the exact
solution nor an upper bound
for the results is provided by
the classical method of
successive approximations.

-.8
< > \
Ckculararcr=.iO

I -.6 – 0 Presentresults
‘--—lst arder

I

/ e

G -“-—:;: ,, Eq.(30) i

‘-”––l.storier
I-.4– _..._~n~ ,,
Eq-(32)

——- 3rd n

—.-. ,-— -- & Eq(8)
-.2

0 .2 .4
Mm

.6 .8 1.0

Sketch (h)

In order to provide further insight into this situation, three
additional curves are included in sketch (h) to show the variations

‘f ~wlm~ ~ dicated by the following expression:

~cti%=2Em[-/~]
(w] 1/3

where for the midpoint of a circular-arc

given in equation (31). Notice that
airfoil the coefficient, ~, is

(33)

The foregoing expressions represent the results of the Nth approximation
obtained by app~cation of sn alternative method of successive approxima-
tions that involves the solution of quadratic rather th~ linear equa-
tions at each step of the iteration process. This method, described
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briefly in reference 1
yields results at each
the variation with ~

.

and discussed at greater length in reference 2,
ste~ that overestimate, rather than underestimate,
of the pesk negative values for ~. Although *

the difficulties of integration are as great as in the cla~sical method
of successive approximations smd only the first few steps can be evaluated
in any specific application, it is shown h-the appendix of the report
version of reference 1 that the results obtained for flows that are sub-
sonic everywhere converge, in the limit of an infinite number of iteration
steps, to the same result as ultimately obtained by application of the
classical method of successive approximations. The result obtained by
application of the qpadratic method clearly terminates with the occurrence
of sonic velocity somewhere in the flow field, however, end no results are
provided for mixed or transonic flows. This termination of the result is
in distinct contrast to the apparent behavior of the results of the classi-
cal method of successive approximation, but closer examination of the rela-
tion between the two sets of results reveals that the infinite series with
which the latter results are expressed does not converge at Mach numbers
greater them the critical smd that the values Indicated for trsnsonic flows
are false. Since the exact solution of the equations of trsmsonic flow
theory is presumed to indicate a variation of ~ with & that is somewhat
greater than that indicated by the thifi approximation of the classicsl
method, but somewhat less thsn that indicated by the third approximation
of the quadratic method, it is evident upon examination of sketch (h) that ●

the proper trend is defined within rather narrow ltiits, sad that the
results of the present numerical calculations fall within these limits. .

F-
0 Present resulk

----—lst arder -1.0
——_ 2nd II Eq.(30)
——.-. 3rd II
---–--lst order
—..._ 2nd H

1
Eq.(32)

——. 3rd u
,

-4.0 -3.0 -20 -1.0 0
L

Sketch (i)

substsatially the ssme as illustrated in
of a 10-percent-thick airfoil.

.

Although it is immediately
evident from the foregoing dis-
cussion that results correspond.
ing to those illustrated in
sketch (h) for the 10-percent-
thick airfoil could be calculated
readily for airfoils of other
thickness ratios, graphical pre-
sentation of the results in
terms of Cp and ~ would
recpire a complete set of curves
for each thickness ratio consfd-
e~ed. The correspondingvalues
for thin airfoils of srbltrary
thickness ratio csn be smmna-
rized concisely by a single set
of lines, however, by plotting
the results in terms of the
reduced variables 5P snd ~m.
Such a plot is given h
sketch (i). It csn be seen that
the relationship between the .
various approximations remains
sketch (h) for the special case

*
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The corresponding_results
for the variation of Cp
with Em at.the station, x/c,
along the chord at which the
present results indicate sonic
velocity is first attained as
the Mach number is increased
are shown for the other four
airfoils of the present inves-
tigation in sketches (j)
and (k). It is necessary to
present only two plots because
the results for subcritical
Mach numbers are the ssme for
the airfoils having the point
of maximum thickness located
at 30- and TO-percent chomil,
and similarly for those having
msximmn thickness at 40- and
60-percent chord. Since
approximations higher than the

. first have not beeh detemined
for comparison with the pres-
ent numerical results for the

. latter four airfoils, an addi-
tional curve is included in
sketches (i), (j), and (k)
illustrating the variation
of ~ with.& indicated by
the foil.otingpressure-
correction formula derived in
reference 2:

(34)

%
where — is the value

for ~ indicated by lineari-
zed compressible flow theory.
The relation given by equa-
tion (34) is approximate, but
it csn be seen from sketch (i)
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Sketch (kl. .
that its use leads to results-that are more accurate th= those indicated
by linearized theory. Although it has not been proved in general, it
appears from examination of the results for the symmetrical circular-arc.
airfoil snd other cases for which higher order approximations are avail-
able that the variation of ~ with ~m indicated by equation (34) is

. somewhat greater than the proper trend.
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It cm be seen fran the foregoing comparisons that the present
numerical results appear in each case to be in good accordance with other
theoretical results for subcritical Mach numbers. There are no correspond.- +
ing theoretical results available with which the present resul.ts.forsuper-
critical Mach numbers C&IQbe compared, however, end evaluation of the
accuracy of the results in this rsage can only be attempted at the present
time by comparison with experimental results.

CourparisonWith Existing Experimental Results
for Supercritical Flows

The appeal to experiment to $.xigethe qyality of sn approximate
solution of the equations of compressible flow is nowhere a more uncer-
tain procedure than in the range of Mach numbers somewhat greater thsn the
critical in which the shock wave is situated upstresm of the trailing edge.
The principal reason is that the theoretical results are based on the
assumption of sn inviscid gas, whereas numerous experimental investigations
(see, e.g., refs. 14 through 19) indicate that viscous effects associated
with interaction of the shock wave and the boundary layer are frequently,
if not invariably, of substantial msgnitude in the general.vicinity of .
the point where the shock wave meets the boundary layer. A resum~ of some
of the more prominent aspects of

Circular arc

- ● PmSentresults
Expwirrent ref.3

m

e

A .10
v

/ ‘ mm

-1.0
~ E@3)J

-4.0 -3.0 . -20 -1.0 0
<m

Sketch (1)

snd are qualitatively shilar at

these phenomena is given in reference 1.
.—

As a start toward a more specific
discussion of the present results, con-
sidex the comparison shown in sketch (Z)
of the theoreti~al md experimental
variations of ~ with Em at the mid-
point of symmetrical circular-arc air-
foils. The circles joined by the solid
line represent the calculated restits
for a thin airfoil of arbitrary thick-

—

ness ratio. The other data points
represent the experimental results from
reference 3 for four airfoils having
thickness ratios of 0.06, 0.08, 0.10,
and 0.12 snd should, according to the
trsnsonic similarity rule, define a
single curte. Although the theoretical
and experimental results are in reason-
able agremnent at Mach numbers near 1
all Mach numbers, it csn be seen that

substantial qumtitative discrepancies exist for Mach numbers in the gen-
eral vicinity of the critical. It is unlikely that these discrepancies
at the midchord station csm be attributed to shock-wave boundary-layer
interaction. Examination of the results for the other airfoils of the
Present investigation reveals similar discrepsmcies when compared with the
‘&per-tal daia
Since the results

of Michel, Marchaud,
for the circular-arc

snd ~ Galla given in-reference 4.
airfoil are typical of those for

.—

●

.
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aU of the airfoils considered herein, most of the following discussion
is concerned with closer examination of the results for this particular.
airfoil.

Experimental pressure distributions for supercritical flows past
symmetrical circular-src airfoils have been published not only in refer-
ences 3 and 4, but also in references 14 and IS by Liepmann, Ashkenas,
snd Cole, and-in reference K by Wood
and Gooderum. It should he noted,
however, that the investigations
reported in references 14 and 15 are
concerned primsril.ywith boundary-
layer shock-wave interaction and the
authors include statments h refer-
ence 14 casting doubt on the accuracy
of the values indicated for the free-
stresm Mach number, a quantity of
only secondary importance in their _
investigations. The variation of
with Em

%
at the midpoint of these

airfoils is presented in sketch (m)
. in exactly the same manner as in

sketch (Z) so that the two sets of
results should coincide. It can be

. seen that such coincidence of the

--4,0
- .

Ciik3r arc

0 Presentresults
h=~2ment ref [6 -3.0

❑

* *f’-t ref14 G

r,.

A r=.lz !0’ -200 ,

/ - & Eqf3)
-1.0

) -30 & -20 -1.0 0

Sketch (m)

results is again observed at Mach nmbers near 1, but that there is wide
scatter in the results for Mach numbers in the vicinity of the critical.
It is interesting to observe in all these cases, as welL as in others for
Mach number 1 given in reference 2, that the experimmtal results for the
thicker airfoils are gemerall.yin better agreement with the calculated
results than those for the thinner airfoils. This trend is contrary to
what might be expected if a major source of error were associated with
the assumption of small disturbances in the establishment of the equations
of transonic flow theory.

Inasmuch as the differences among the various sets of results exist
at Mach numbers less than as well as greater thau the critical, it is
possible to explore the accuracy of the various results by comparison with
the third-order appro-tion of Ass&a to the solution of the complete
eqyations of subsonic compressible flow theo~. Since the latter theory
includes terms disregarded in tramonic flow theory and results for air-
foils of different thickness ra~ios do not collapse perfectly onto a single
line when plotted in terms of ~ and Em, the results are given in
sketch (n) in terms of ~ andl.& In order to avoid confusion due to
overlap, the intermediate thicbess ratios, T = 0.08 and T = 0.10, have
been omitted. It can be seen that none of the experimental results are
in good agreement with the values indicated by higher order theory. Inas-

* much as there is considerable evidence from various sources that higher
order theory generally provides results that agree well with those found

. experimentally for Mach numbers up to the critical, it would appear that
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the source of the
discrepancy should be
sought in some facet of
the experimental
technique.

Cp Some disagreement
between theoretical snd
experimental pressure
distributions, although
generally of much smaller
nmgnltude thaa that
observed in sketches (Z)
through (n), must always
be anticipated to result
from the presence of the
bamdary layer. The
influence of this factor

Mm may be somewhat greater

Sketch (n)
than usual in the experi-
mental investigations of

references 3 and 4 because the airfoil is not mounted in the middle of the .

tunnel as is customary, but is simulated by a bump on the tunnel wall, and
is hence Wbedded in the wall.boundary layer. The authors of references 3
and 4 have considered this point, however, and ticluded some evidence that

*

indicates the experimental results on the 12-percent-thick circular-arc
airfoil at a Mach number of 0.99 are substantially the ssme as those on a
similar airfoil mounted in the middle of the tunnel end having a boundary
layer artificially made turbulent. No corresponding information is pre-
sented for lower Mach nmbers or for the thinner airfoils for which the
relative effects of the boundary layer woulClbe greater. Although it is
recognized that the influence of the boundary layer on the pressure dis-
tribution is not the ssme for all Mach numbers, it is difficult to account
for the small discre~smcies between theory and expertient near Mach nm-
ber 1 and the large discreysncies near the critical Mach number by
?nmdary-layer effects alone. It appears, therefore, that some other .
factor might be supplying a substantial contribution to the observed
discrepancies.

A source of uncertainty that is present in all wind-tunnel testing
is associated with the finite dimensions of the test section. The study
of wall interference and the determination of formulas for the calculation
of corrections have consequently been the subject of numerous investiga-
tions (see, e.g., refs. 20 through 2’3). It is found, for airfoils and
test sections of typical proportions, that the influence of the walls iS
generally small at low Mach numbers, but increases subst@ia~ as the
Mach nunber increases toward and into the transonic rsmge. Preliminary
investigation reveals, moreover, that it appesrs plausible to attribute a
substantial mount of the present discrepancies to this source..,.

*

.
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In order to be more specific, consider the
past a thin nonlifting airfoil of chord c and

31

problem of trsmsonic flow
thickness ratio T mounted

in the center of a wind tunnel of height 2h. The aerodynamic properties
of this airfoil are to be compared with those of the ssme airfoil in sn
unbounded flow with free-stresm velocity Um. It is considered that the
a~arent free-stresm velocity in the wind tunnel, as determined from
measurements of pressure at a yoint far upstresm in the test section or
in the plenum chamber of a ventilated wind tunnel, is not necessarily
equal to Um, but is given by Um + ~ where ~ is much less than Um.
The appropriate equations for the study of such flows are thus eqya-
tions (4) through (6) together with the following relation for the
pressure coefficient

%
on the airfoil in the wind tunnel

(35)

and sm additional boundary condition at z = & determined by the nature
of the wall. This condition is w = O if the test section has solid

. Warn, u = ~ if the test section is m open Jet, and a more complicated
relation if the test section has porous or slotted walls. It is not nec-
essary to be more specific shut the boundary condition for the latter

. case at this point, since it is shown in references 21 and 22 that the
influence of a ventilated wall.is intermediate between that of a solid
wall and an open jet.

The linearized theory of wind-tunnel wall interference fo~ows
directly from the equations enumerated above upon replacing the right-
hand sides of equations (5) and (6) by zero. It is found, provided the
dimensions of the section are large compsred with those of the airfoil,
that the net effect of the walls at subsonic Mach nwbers is that the
pressure p (not ~) snd local Mach number a-tthe surface of the air-
foil in the wind tunnel in a flow with apparent free-stresm velocity
w+ w is the ssme as at the surface of an identical airfoil in an
unlmunded flow with free-stream velocfty Um. The qusntity ~ is
given by

where H represents
depends on the nature

h/c and C is a constsnt, the value of which
of the walls of the test section; for exsmple,

(36)
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= 6=

solid walls

C=+x.fk open jet
12 tc 1.—
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(37)

where & is the area of the airfoil section. The influence of the
tunnel walls on ~ follows directly upon combins,tionof equations (35)
and.(36). It is

~=cp-~=-2~

Comparison with other results presented in this
by rewriting eqpations (36) and (38) in terms of ~p

A6m=&-~
%=- (-km;/’?

A~p = ~-6%=2A~m

.

.

(38)

report is facilitat@
and ~m, thus

*

(39)

(40)

where

If the influence of the walls is exsmined for a fsmily of airfoils of
different thickness ratio snd with the apparent Mach numbers in the wind
tunnel selected so as to maintain a given ~m, and thereby to secure
similarity of trsnsonic phenomena such as the critical Mach ~urnber,etc.,
it is evident from equations (39) and (40~that IAQ] aad IAC I are
inversely pr~portional to the square of H. ?It follows tied atel.ythat
lum I and IA% I diminish if either the height-chord ratio h/c of the
tunnel or the thickness ratio -r of the airfoil is increased.

.
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Added insight into the nature of
the influence of the tunnel wdd.s can

.
be had by exsminhg the curves given
in s~etch (o) showing the variation
of ~ with ~m at the midpoint of a
symmetrical circular-arc airfoil in
sm w_bounded flow (or the variation
of

%
with ~

%
for infinite E)

together wit~ the corresponding
values for

%
with ~ computed

by use of equations (39) and (kO) for
the same airfoil mounted h either a
closed wind tumnel or an open jet of
such dimensions that H eqpals
eithe~ 1 or @. The value of unity
for E corresponds, for instance, to
that associat~ with a 6-percent-
thick airfoil in a wind tunnel having
a ratio of semiheight to chord h/c
of 7/3 (the ssme as that for the

. experimental data shown in sketch (2))
at sn effective free-stream Mach num-

33

%~

Sketch (o)

ber M& of approximately 0.7~. Although the curves are continued to.
supercritical Mach numbers for which the use of linear theory to calculate
the influence of the tunnel walls may be open to question, it is inter-
esting to obsene that the differences between the results for an
unbounded flow and for sn airfoil in sn open jet sre qualitatively simi-
lsr to those that can be obsened in sketch (2) between the theoretical
results for an un?munded flow and the experimental results measured h a
wind tunnel with slotted test section. The differences between the theo-
retical ad experimental.results are larger than indicated by the linear
theory of wdl interference, but quantitative agreement should perhaps
not be expected since it is well knowm that substantial nonlinear effects
occur at Mach nunbers of the order of the critical and greater.

An interesting property of the Mnear theory for the influence of
the tunnel walls is that there is a maximum value for ~

w’
and hence

the apparent free-stresm Mach n-her, in a closed tunnel. This result
is at least qualitatively consistent with the familiar property of choking
of wind tunnels with solid walls. If the dimensions of the test section
are sufficiently large compared with those of the airfoil, the values
for -

%
associated with the maximm value for

‘%
are on the etien-

sion of a line ~-2~a=V.z. Since 7$-25m isequalto-2~,

which is the reduced quantity -=sociated with the local Mach number, this
r result indicates that the local Mach mmber distribution measured on an

airfoil in a solid-waJl tumnel of sufficiently great dimensions under
choking conditions is the same as in an unbounded flow with free-stresm

● Mach number 1. TIIiSconclusion is in complete accordance with the more
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for flow
and with

theoretical results,
past a wedge airfofi
experimental results
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based on nonlinear transonic flow theory,
sad a lifting flat plate (refs. 24 and 25),
for = NACA 64Ao08 airfoil tested in several

.

test sectio& of different sizes (ref. 26).

Linear theory indicates inftiite corrections when % = 1 - must
be replaced by a corresponding theory based on the nonlinear equations
of trsmsoni.cflow theory. This theory is not developed as far as the
linear theory, but it is clear from simi~arity considerationsthat the
functional form for the ~ression for

%
for a fsmily of affinely

related airfoils in a wind tunnel is

(41)

plus additional.parameters indicative of the Torosity of the walls or of
the geometry of the slots for wind tunnels with ventilated test sections.

If it is assumed that the local Mach number distribution measured
on en
flow,
again
form:

airfoil in a wind tunnel is the ssme as that measured in an unbounded
in accordance with the indications of I-ineartheory, equation (40) .

applies together with an expression for & that has the following
—

a. = f(~m, E) (42) “

Equation (39), obtained from linear theory, is consistent with this
functional expression and is, moreover, the precise relation that the
solution of the nonlinear equations of transonic flow theory must approach
as the free-stream Mach number tends toward zero. A1.th~u@ *ySiS Of
the influmce of the walls based on consideration of A% and&a as

described above is similar to that successfully employed for low-speed
flows, it may not be the best procedure to follow for Mach numbers near 1.
The reason is that the correctionsmust inevi~ablybecome large at Mach
numbers near 1 as a result of the fact that C$ - 2~w is independent
of Em in this range.

Alternative procedures that ~esd to smaller corrections at Mach
—

numbers near 1 are to consider ACP at ~
%

.= Em, orto find &m so

that ~ = Fp
—

at some representative point on the airfoil. If the

former ~tit of view is sQopted it follows from equation (41) tha~ ~
is a function of _&m and H. At Mach number 1, ~m is zero and
depends only on H, thus % -.

*
(43)

●
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If it is assumed

. reasonable since
were tested in a
again that &J

that,—,
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l&$/ decreases tith increasing ~, as appears

h% I WO~ be expected to be smaller if a given airfoil
large wind tunnel than in a small wind tunnel, it follows
is smaller for a thick airfoil than for a thin airfoil

of affinely re’hted geometry tested in a given wind tunnel.

Although the above discussion applies strictly only to families of
affinely related airfoils, certain properties of the asymptotic solution
for the flow at great distances from an airfoil at Mach number 1 suggest
that the ma~itude of 1~1 is greater for airfoils having maxhum thick-
ness far aft than for those having maximum thickness far forward. The
reason is that it is not so much the thickness and chord of the complete
airfoil that matters in the expressions for the asymptotic solution at
Mach number 1, but the part of the thickness and chord that is more tidic-
ative of the portion of the airfoil that can influence the subsonic part
of the flow field. This point has been discussed by Barish (ref. 27) who
suggests the use of values of thicbess t* sad chord c* that are asso-
ciated with the sonic point. This suggestion is based upon the obsema-
tion that numerical calculations indicate the asymptotic flow fields of
wedges and certain cusped-nosed airfoils are nearly independent of the
details of the shape, provided t* and c* are fixed. It follows, to
whatever extent this observation is generally true, that the relation
corresponding to equation (43), but appropriate for nonsffinely, as weld.
as affinel.y,related airfoils is of the following form:

(44)

where

A%* =
[%2(7+1) ]“3

#/3 * ‘
r = [lQ2(7+l)T*]‘/=m

H*=A, .#_t*
C* &

It is evident from inspection of sketches (2) and (m), as well as
the more extensive set of results given in reference 2, that a substan-
tial part of the discrep=cies between the theoretical and experimental
results for Mach number 1 possesses properties consistent with those
described above for the influence of the wind-tunnel walls. This corre.
spondence prompts the presentation of sketch (p) which shows the varia-
tion of %* with ‘% at free-stream Mach number 1 at the @tit on the

airfoil surface at which sonic velocity occurs in free air. The values
for ~ were computed using the theoretical values given in
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reference 2 for ~ and the

experimental values_given in refer-
ences 3 and 4 for ~ . The loca- “

WT
tion of the sonic point and hence
the values of’ t* and c* are thus
determined from the theoretical
solution. Although the general —

procedure may be open to some ques-
tion smd scatter is inevitably large
since .N-Q* is basically a small

difference of lsrger qwtities
(some idea of the uncertainty of
the values for A~m* can be gained —

by consideration of the vertical line through each data ~oint indicating
the rsnge of values associated with aa arbitrary change of 1 percent in

—

the local Mach number), the results dis@ay a reasonably well-defined
trend consistent with the ideas that %* does depend on R* ad

that 1~1 diminishes with increasing ‘~.-

*
Pressure Drag

.

Once the pressure distribution is known for a given airfoil, the
pressure drag ‘d

It is convenient
defined in terms

It is clear from

can be calculated by use of

at
of

cd =
d ~

(pm/2)um2c = c J
c%

this point to introduce a
reduced qusatities, thus

the f~llowing rel.a&on: —

gdx (45) ‘“-

between cd and Ed is

.

reduced drag coefficient Ed

(46)

the definitions of .-~, T, ~, end X that the relation

[%2(7+1)] 1/9
-Fd =

T!5/3

?

“
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The variation of

. circular-arc airfoil..
graphically in sketch

Ed with Em
The results
(q). Three

ad
——

-1.42 0
-1.35 .00
-1.25 .1.2
-1.12 .65

::;g 2.99
4.W
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has been computed for the symmetrical
are ammarized below and illustrated
classes of results are included in this

I I r
.~. j

e>.-k~

Circular arc : 4
:
i G

!
f 2

&l

-1.6 T- -12 -.8 = -4 ~o

sketch and are distingui.shedby the type
the curve represents the values for Mach
shock wave has moved to 0.9 chord and is
of the pressure-distribution results for

%0

Sketch (q)

of line. The solid portion of
mmhers up to that at which the
determined by direct application
Em~-0.985 given in table I

. and summarized in figure 3. The continuation of the curve to a value
for Em of -0.838 is detemnined in a similar manner, but is indicated

—.

by a dashed line because the calculated pressure distribution is inaccu-
W

rate in the vicinity of the trailing edge when the shock wave is at the
trailing edge. The pa%ion of the curve marked by long dashes represents
the value 4.77 given in reference 2 for Mach numbers near unity. In all

—

cases, the integrations reqyired to determine the drag were evaluated
using Simpson’s rule. Very fine intervals were used near the leading
and trailing edges and the contributions of the regions in the immediate
vicinity of the leading- and trailing-edge singularities were evaluated
analytically in order to achieve the desired degree of accuracy.

It canbe seen by examination of the results shown in sketch (q)
that cd is zero for Em< -1.42 (corresponding to the critical Mach num-
ber) . It remains nearly zero as Em increases to -1.35, and then rises
rapidly with further increases of ~m. The increase in drag is associated
principally with the rearward movment of the shock wave across the chord
and terminates abruptly when the shock reaches the trailing edge at
Em = -0.838. Although no values for drag sre given, it is evident from
inspection of the variation of – with Em indicated in figure 8 that
further increases in Em result% only small changes in cd, and that
f~~, at a ~d.ue of Em somew~t less t~ zero, ~d becomes
invarisnt with further changes in Q.
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6
The values for the drag of the

I 1 b
Airfoils definedby

other airfoils considered in the pres-

— Eq.(1)
ent investigation have been calculated
only for Mach numbers near unity. These

\ ---–Eq.(3)
5 / results, given originally in reference 2,

/ are summarized in sketch (r) together~. .
cd with the correspondingresults for

related airfoils defined by equations (1)
and (3) upon insertion of values for n

~-%-~-,--l.,~~= gfng’mm’0mto6 =050 _n There are no experimental results

.30 40 .50 .60 ,70for the Tressure drag of symmetrical

Point of maximum thtiness,(xk)z
circular-arc airfoils that are of suf-

IIWX ficient reliability to provide a clear

Sketch (r)
evaluation of the accuracy of the cal-
culated results shown in sketch (q).

The most extensive results are those given by Michel, Marchaud, md
Le Galloln reference 3 for four airfoils of different thickness ratio.
These results were obtained by integration of the measured pressure dis-
tributions and suffer in quality, not only as a result of the factors
discussed in the Treceding section of this report, but also because of .
lack of sw?fici=t pressue-distribution data for points near the leading
snd trailing edges. The results of Michel, Marchaud, snd Le Gallo are
presented, nevertheless, in sketch (s) together with the theoretical .

results from sketch (q). Also included in sketch (s) are the theoretical
vd.ues for Fd for purely supersonic flow. The latter results are from
reference 2 and were calculated by integration of pressure distributions
obtained by application of a simp~fied form of simple wave theory that
is consistent with the equations of transonic flow theory.

I 6

Ref. 2 I I I I
—

Circular arc
: v:
.

Present results
‘\\

- -L. -
Ref. 2+-A

; c1 -- -.
: d ‘
:

3 2 Experiment ref. 3 Extrapolated drag ref. 3—

:; ‘~ ~ .;6 ~ .&
I ❑ .08 ~ .08

A .10 A .10

v v .12 ~ .12

-1.6 ‘ -.8
00

.8 1.6 ● 2.4 32 4.0
%0

Sketch (s)

●
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Examination of the results shows in sketch (s) reveals that the
theoretical and experimental variations of Ed with Em exhibit the ssme
general trends hut are quantitatively quite different. Part of the dif-
ference is undoubtedly associated with boundary-layer shock-wave inter-
action. As discussed at greater length in reference 1, this phenomenon
can have considerable influence on the drag, but is disregarded completely
in the basic formulation of transonic flow theory. From the standpoint
of drag, one of the primcipal effects of shock-wave boundary-layer inter-
action appears to be that the shock wave is tied to a more forward loca-
tion along the chord. The pressures on the resr part of the airfoil are
increased as a result and a substantial reduction in drag follows. These
effects are largest at Mach numbers sorgewhatgreater than the critical,
but persist to a lesser degree for sonic snd even purely supersonic flows.
Because this phenomenon depends on Reynolds nwber snd may be of greatly
diminished importmce at full-scale conditions, Michel, Marchaud, and
Le Gallo introduced in the discussion of their experimental results for
free-stream Mach numbers equal to or greater them unity the concept of
“extrapolateddrag” to represent the drag that would occur in the absenoe
of sep~ation. This qus.ntityis calculated by consideration of a pressure
distribution that differs from the experimental pressure distribution in
the vicinity of the trailing edge as a result of the replacement of the
pre6sures actually measured by those obtained by exlrapola.tionof the
trends indicated at stations upstream of the separation point. Accord-
ingly, the values for extrapolated drag givem by Michel, Marchaud, snd
Le Gallo sre also shown in sketch (s). As might be expected, the theo-
retical values for drag are in better agreement with the values for extrap-
olated drag than with those obtained

Another part of the difference
between the theoretical snd experi-
mental values for drag is associated
with the higher critical Mach num-
bers displayed by the experimental
results in sketch (s) =d is prob-
ably to be attributed to the influ-
ence of the wind-tunnel walls. Some
idea of the ma~itude of these
effects can be gained by exsmins.tion
of sketch (t), which shows the vari-
ation of @d with Em for a symmet-
rical circular-arc airfoil in an
unbcunded flow (or the variation

‘f %dTtith%m‘orwtiite ‘)

directly from the actual measurements.

r

●

together with the corresponding values for ~d and ~
WT %!!2

computed by

use of equations (39) and (40) for the ssme airfoil mounted in either a
closed wind tunnel or open jet of such dimensions that ~ equals either 1
or G. These values of ~ are the ssme as considered in sketch (o).
Sketch (t) illustrates that the effect of the finite dimensions of the
test section is such that the values for Ed

WI’
remain eqysl to the
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correspondingvalues for an airfoil in m unbounded flow, although
experienced at different values of ~m, or Mach number. As a result,

.

significsmt effects of the walls are observed in the variation of
.

~dm

with ~
%lT

at Mach numbers somewhat greater than the critical. All.such
..-

differences disappear at Mach numbers near unity in = open jet or near
choking in a solid-wall wind tunnel, however, since Ed is independent
of Em in this range. Examination of sketch (t) reveals again that the
differences between the results for an unbounded flow snd for sn airfoil
in an open jet are-qualitatively similar to those that can be observed
in sketch (s) between the theoretical results for sm unbounded flow and
the experimental results measured in a wind tunnel with slotted test
section.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., Oct. 22, 1957
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